

# The 1<sup>st</sup> IIS-UPJV Joint Workshop 2025



Abstract book

## Scope

The workshop aims to advance collaborative works between the researchers in Institute of Industrial Science (IIS), The University of Tokyo and University of Picardy Jules Verne (UPJV). It serves as the kick-off event for a continuing series of the joint workshop. While future events will cover a wide range of research fields, this initial meeting focuses on the neuro-mimetic/neuromorphic computing models.

## Workshop website

[https://www.neumis.iis.u-tokyo.ac.jp/ws\\_upjv2025.html](https://www.neumis.iis.u-tokyo.ac.jp/ws_upjv2025.html)

## Dates and venue

16:00 – 17:50 (JST), 16th, September, 2025

Online (ZOOM):

<https://u-tokyo-ac-jp.zoom.us/j/86205434713?pwd=sDmffX1zkyNl7hZlbB7C07MpC9valJ.1>

## Sessions

20-min talk + 5-min Q&A

16:00 — 16:05 (JST) Opening remarks (Takashi Kohno, IIS)

16:05 — 16:30 (JST) Brad Niepceron and Filippo Grassia (UPJV)  
"Unlocking Energy Efficiency in Computer-Aided Cancer Diagnosis System"

16:30 — 16:55 (JST) Žarko Vučenović and Takashi Kohno (IIS)  
"Analyzing a light-weight data-driven model of Drosophila olfactory network"

17:00 — 17:25 (JST) Kenza Garreau, Brad Niepceron, Emmanuel Bellenger, and Filippo Grassia (UPJV)  
"An Attention-based Spiking Neural Network for High Resolution Medical Image Classification"

17:25 — 17:50 (JST) Shunta Furuichi and Takashi Kohno (IIS)  
"Neuromorphic spatiotemporal spike pattern detection model with heterosynaptic plasticity"

## Organizers

- Prof. Takashi KOHNO, Institute of Industrial Science (IIS), The University of Tokyo, Japan
- Prof. Filippo Grassia, Laboratory of Innovative Technologies (LTI), University of Picardy Jules Verne, France

# Unlocking Energy Efficiency in Computer-Aided Cancer Diagnosis Systems

Brad Niepceron<sup>1†2</sup> and Filippo Grassia<sup>2</sup>

<sup>1</sup>Kaptios, 92 rue de l'église, 60800 Crépy-en-valois, France  
(E-mail: brad.niepc@kaptios.com)

<sup>2</sup>University of Picardie Jules Verne, Laboratory of Innovative Technologies (LTI, EA 3899),  
Avenue des Facultés, Le Baille, 80025 Amiens, France  
(E-mail: filippo.grassia@u-picardie.fr)

**Abstract:** In radiology, Artificial Neural Networks (ANNs) have been widely used to enhance cancer diagnosis by automating tasks such as the detection, classification and segmentation of pathological findings [1-3]. While these models have shown outstanding performances, their deployment is constrained by the substantial computational and memory resources they require to operate [4]. Such demands not only restrict large-scale clinical adoption but also intensify concerns around energy consumption. Moreover, the cloud-focused paradigm of deep learning based applications is limited in its potential to unleash on-medical-device analysis in real-time by way of low-power embedded systems that would otherwise reduce latency, improve workflow continuity, and protect data against security and transfer concerns [5]. Optimization or replacement of these methods with models that are less dependent on such high computational resource availability is therefore imperative. In this work, we review and discuss approaches that aim to address these challenges from different perspectives. First, we show that model compression and efficient neural network modeling can reduce the computational footprint of conventional deep learning systems while maintaining accuracy [6]. In contrast, we introduce how neuromorphic computing and spiking neural networks (SNNs) offer fundamentally different strategies, opening new opportunities for low-power computer-aided diagnosis systems [7-9]. Additionally, we discuss methods for preprocessing, encoding, and representing medical data in ways that are compatible with these models, further facilitating their adoption in practical medical applications [10]. We highlight recent contributions that explore these directions, with a particular focus on their application to radiology and cancer diagnosis. Finally, we outline the remaining challenges and future prospects for making medical image analysis systems both effective and energy efficient, paving the way for wider clinical integration.

**Keywords:** Computer vision, biomedical imaging, cancer diagnosis, spiking neural networks, neural coding

## REFERENCES

- [1] G. Litjens, Thijs Kooi, B. E. Bejnordi, A. Setio, F. Ciompi, M. Ghafoorian, J. V. D. Laak, B. Ginneken, and C. Sánchez. A survey on deep learning in medical image analysis. *Medical image analysis*, 42:60–88, 2017.
- [2] F. Milletari, N. Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural networks for volumetric medical image segmentation. *2016 Fourth International Conference on 3D Vision (3DV)*, pages 565–571, 2016.
- [3] Hao Dong, Guang Yang, Fangde Liu, Yuanhan Mo, and Yike Guo. Automatic brain tumor detection and segmentation using u-net based fully convolutional networks. *Medical Image Understanding and Analysis*, page 506–517, 2017.
- [4] Neil C Thompson, Kristjan H. Greenewald, Keeheon Lee, and Gabriel F. Manso. The computational limits of deep learning. *ArXiv*, abs/2007.05558, 2020.
- [5] L. Minh Dang, Kyungbok Min, Dongil Han, Md Jalil Piran, and Hyeyoon Moon. A survey on internet of things and cloud computing for healthcare, June 2019.
- [6] B. Niepceron, A. Nait-Sidi-Moh, and F. Grassia. Moving medical image analysis to gpu embedded systems: Application to brain tumor segmentation. *Applied Artificial Intelligence*, 34:866 – 879, 2020.
- [7] Brad Niepceron, Ahmed Nait Sidi Moh, and Filippo Grassia. Study of pulse-coupled neural networks for glioma segmentation. 01 2021.
- [8] Brad Niepceron, Filippo Grassia, and Ahmed Nait-Sidi-Moh. Brain tumor detection using selective search and pulse-coupled neural network feature extraction. *Comput. Informatics*, 41:253–270, 2022.
- [9] Brad Niepceron, Kenza Garreau, Ahmed Nait-Sidi-Moh, and Filippo Grassia. Enhanced brain tumor classification with convolutional spiking neural networks. In *2024 Artificial Intelligence Revolutions (AIR)*, pages 82–88, 2024.
- [10] Kenza Garreau, Brad Niepceron, Emmanuel Bellenger, and Filippo Grassia. Optimizing neural coding in spiking neural networks for mammography image processing. 2025.

† Brad Niepceron is the presenter of this paper.

# Analyzing a light-weight data-driven model of *Drosophila* olfactory network

Vučenović Žarko<sup>1</sup>, Kohno Takashi<sup>1</sup>

<sup>1</sup>The University of Tokyo, Institute of Industrial Science, Laboratory of Neuromimetic Systems  
Email: vucenovic@g.ecc.u-tokyo.ac.jp, kohno@g.ecc.u-tokyo.ac.jp

**Abstract:** Data-driven spiking neural networks (SNNs) enable *in silico* investigation of neuronal dynamics at the cellular scale, providing insight into general processing principles of the brain. Insect nervous systems, being less complex yet well studied, are particularly valuable for analyzing mechanisms that also appear in mammalian circuits. Building on previous work [1], which introduced a lightweight, data-driven, digital model of the *Drosophila melanogaster* brain based on the Piecewise Quadratic Neuron (PQN) model [2], we extend the analysis to refine its biological plausibility. The original network reproduced key features such as olfactory associative learning (OAL) and oscillatory activity in the antennal lobe. Here, we re-evaluate assumptions concerning inhibitory network topology, focusing on the distribution and connectivity of Local Neurons (LNs). Two alternative antennal lobe topologies are proposed: one integrating experimentally observed LN class ratios [3] with full interconnectivity, and another constrained by connectome-derived sparse connectivity [4]. Odour input patterns were redesigned to include deterministic pools, structured presentation sequences, and graded intensity variations, enabling broader assessment of learning and sparse coding performance. Results show that input variability strongly impacts behaviour: OAL success for the base topology fell from 84% to 42.24%, while the best alternative achieved 46.33%. Additional analyses like unexpected output neuron firing and antennal lobe modulation hint to topology-dependent performance, as well as case-dependent OAL success rate. These findings highlight the impact of inhibitory structure on information processing and suggest pathways toward making this network a more faithful neuromorphic module.

**Keywords:** Spiking neural network, PQN, antennal lobe, local neuron, inhibitory network, OAL

## References

- [1] Takuya Nanami, Daichi Yamada, Makoto Someya, Toshihide Hige, Hokto Kazama, and Takashi Kohno. A lightweight data-driven spiking neuronal network model of drosophila olfactory nervous system with dedicated hardware support. *Frontiers in Neuroscience*, Volume 18 - 2024, 2024.
- [2] Takuya Nanami and Takashi Kohno. Piecewise quadratic neuron model: A tool for close-to-biology spiking neuronal network simulation on dedicated hardware. *Frontiers in Neuroscience*, Volume 16 - 2022, 2023.
- [3] Yuki Seki, Jürgen Rybak, Damian Wicher, Silke Sachse, and Bill S. Hansson. Physiological and morphological characterization of local interneurons in the *Drosophila* antennal lobe. *Journal of Neurophysiology*, 104(2):1007–1019, 2010.
- [4] Louis K Scheffer, C Shan Xu, Michał Januszewski, Zhiyuan Lu, Shin-ya Takemura, Kenneth J Hayworth, et al. A connectome and analysis of the adult drosophila central brain. *eLife*, 9:e57443, 2020.

# An Attention-based Spiking Neural Network for High Resolution Medical Image Classification

Kenza Garreau<sup>1†2</sup>, Brad Niepceron<sup>2</sup>, Emmanuel Bellenger<sup>1</sup>, and Filippo Grassia<sup>1</sup>

<sup>1</sup>University of Picardie Jules Verne, Laboratory of Innovative Technologies (LTI, EA 3899), Avenue des Facultés, Le Baily, 80025 Amiens, France  
(E-mail: kenza.garreau@etud.u-picardie.fr)

<sup>2</sup>Kaptios, 92 rue de l'église, 60800 Crépy-en-valois, France  
(E-mail: filippo.grassia@u-picardie.fr, contact@kaptios.com)

**Abstract:** Recent advances have highlighted the potential of artificial neural networks (ANNs) to improve diagnostic accuracy in medical imaging [1-3]. Among possible ANN architectures, spiking neural networks (SNNs) show potential for deployment on clinical edge devices, as they combine low energy consumption with performance approaching conventional ANNs [4-6]. However, SNNs still face challenges in high-resolution image classification, as the conversion of pixel intensities into binary spikes can lead to information loss, while the absence of convolutional layers limits feature extraction, particularly for subtle mammographic findings. To address these limitations, we propose and evaluate the Vision Attention Recurrent Spiking Neural Network (ViA-RSNN), which integrates modules inspired by both biophysical models and vision transformers. Specifically, to better capture subtle features while reducing computational cost, input images are divided into patches, which are flattened and linearly projected into an embedding space. Network stability is enhanced through Poisson encoding, and a processing pipeline incorporating a cross-attention mechanism between a recurrent network and a fully connected linear layer. On the OrganAMNIST dataset, the ViA-RSNN trained with surrogate gradient learning for organ classification achieves about 96% test accuracy and an AUROC of 98.6%, comparable to recent ANN architectures such as Medi-Cat (96% test accuracy) and ResNet-18 (224) (94.7% test accuracy, 99.8% AUROC)[7] [8]. Preliminary results on the VinDR-Mammo dataset further support the potential of the approach, yielding above 90% test accuracy in binary classification of mammograms with or without masses. Combined with the relative compactness of the ViA-RSNN (effective storage cost of about 2 bits per parameter using 8-bit quantization), these results encourage the further deployment of this architecture on a modern low-power SoC.

**Keywords:** Biomedical imaging, attention-mechanism, spiking neural network, unsupervised learning

## REFERENCES

- [1] Li Shen and Joseph Rothstein. End-to-end training for whole image breast cancer screening using an all convolutional design. 2018.
- [2] Alejandro Rodríguez-Ruiz, Kristina Lång, Albert Gubern-Mérida, Mireille J. M. Broeders, Gisella Gennero, Paola Clauser, Thomas H. Helbich, Margarita Chevalier, Tao Tan, Thomas Mertelmeier, Matthew G. Wallis, Ingvar Andersson, Sophia Zackrisson, Ritse M. Mann, and Ioannis Sechopoulos. Stand-alone artificial intelligence for breast cancer detection in mammography: Comparison with 101 radiologists. *Journal of the National Cancer Institute*, 2019.
- [3] Scott Mayer McKinney, Marcin Sieniek, Varun Godbole, Jonathan Godwin, Natasha Antropova, Hutan Ashrafian, Trevor Back, Mary Chesus, Greg C. Corrado, Ara Darzi, Mozziyar Etemadi, Florencia Garcia-Vicente, Fiona J. Gilbert, Mark D. Halling-Brown, Demis Hassabis, Sunny Jansen, Alan Karthikesalingam, Christopher J. Kelly, Dominic King, Joseph R. Ledsam, David S. Melnick, Hormuz Mostofi, Lily H. Peng, Joshua Jay Reicher, Bernardino Romera-Paredes, Richard Siedebottom, Mustafa Suleyman, Daniel Tse, Kenneth C. Young, Jeffrey De Fauw, and Shravya Shetty. International evalua-  
tion of an ai system for breast cancer screening. *Nature*, 577:89 – 94, 2020.
- [4] Joseph M. Brader, Walter Senn, and Stefano Fusi. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. *Neural Computation*, 19:2881–2912, 2007.
- [5] Peter Udo Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. *Frontiers in Computational Neuroscience*, 9, 2015.
- [6] Jiahang Cao, Ziqing Wang, Hanzhong Guo, Haotai Cheng, Qiang Zhang, and Renjing Xu. Spiking denoising diffusion probabilistic models. *2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pages 4900–4909, 2023.
- [7] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and Bingbing Ni. MedMNIST v2 - a large-scale lightweight benchmark for 2d and 3d biomedical image classification. 10(1):41. Publisher: Nature Publishing Group.
- [8] Pervaiz Iqbal Khan, Andreas Dengel, and Sheraz Ahmed. Medi-cat: Contrastive adversarial training for medical image classification, 2023.

† Kenza Garreau is the presenter of this paper.

# Neuromorphic spatiotemporal spike pattern detection model with heterosynaptic plasticity

Shunta Furuichi<sup>\*1</sup> and Takashi Kohno<sup>2</sup>

<sup>1</sup>Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan  
(E-mail: [furuichi@g.ecc.u-tokyo.ac.jp](mailto:furuichi@g.ecc.u-tokyo.ac.jp))

<sup>2</sup>Institute of Industrial Science, The University of Tokyo, Tokyo, Japan  
(E-mail: [kohno@g.ecc.u-tokyo.ac.jp](mailto:kohno@g.ecc.u-tokyo.ac.jp))

**Abstract:** The brain is an efficient information processing system, capable of complex learning with ultra-low power consumption. The human brain, for example, processes single-trial, multimodal spatiotemporal data and acquires new knowledge from it, all while consuming only about 20W of power. Realizing such capabilities remains a significant challenge for current artificial intelligence technologies based on deep learning. Consequently, neuromorphic systems that faithfully mimic the mechanisms of the biological brain are of growing importance. To overcome the constraints of power consumption and device size, it is desirable to implement these systems using dedicated hardware with analog, digital, or mixed-signal circuits. A major challenge in such hardware is that the area of memory circuits required to store synaptic weights increases exponentially with the bit resolution of these weights. While adaptive Spike-Timing-Dependent Plasticity (STDP) [1] proposed to address this, its mechanism of modifying the learning curve independently of neural activity lacks neurophysiological plausibility. Here, we introduce a neurophysiologically plausible learning rule based on heterosynaptic plasticity induced by glutamate spillover. We incorporated this mechanism into a spatiotemporal spike pattern detection model [2] with 3-bit discretized synaptic weights. Our results demonstrate that the proposed model achieves performance of spike pattern detection equivalent to that of a baseline model with 64-bit synaptic weights. These findings provide a foundational basis for designing energy-efficient neuromorphic systems with significantly reduced memory circuit area.

**Keywords:** Spike timing dependent plasticity, heterosynaptic plasticity, spatiotemporal spike pattern detection, low-resolution bit synapse

## References

- [1] Gautam, A., and Kohno, T. (2021). An Adaptive STDP Learning Rule for Neuromorphic Systems. *Front. Neurosci.* 15, 741116. doi: [10.3389/fnins.2021.741116](https://doi.org/10.3389/fnins.2021.741116)
- [2] Masquelier, T., Guyonneau, R., and Thorpe, S. J. (2008). Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. *PLoS One* 3, e1377. doi: [10.1371/journal.pone.0001377](https://doi.org/10.1371/journal.pone.0001377)

---

<sup>\*</sup>Shunta Furuichi is the presenter of this paper.