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Unlocking Energy Efficiency in Computer-Aided Cancer Diagnosis Systems
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Abstract: In radiology, Artificial Neural Networks (ANNs) have been widely used to enhance cancer diagnosis by automating
tasks such as the detection, classification and segmentation of pathological findings [1-3]. While these models have shown out-
standing performances, their deployment is constrained by the substantial computational and memory resources they require to
operate [4]. Such demands not only restrict large-scale clinical adoption but also intensify concerns around energy consumption.
Moreover, the cloud-focused paradigm of deep learning based applications is limited in its potential to unleash on-medical-device
analysis in real-time by way of low-power embedded systems that would otherwise reduce latency, improve workflow continuity,
and protect data against security and transfer concerns [5]. Optimization or replacement of these methods with models that are
less dependent on such high computational resource availability is therefore imperative. In this work, we review and discuss
approaches that aim to address these challenges from different perspectives. First, we show that model compression and effi-
cient neural network modeling can reduce the computational footprint of conventional deep learning systems while maintaining
accuracy [6]. In contrast, we introduce how neuromorphic computing and spiking neural networks (SNNs) offer fundamentally
different strategies, opening new opportunities for low-power computer-aided diagnosis systems [7-9]. Additionally, we discuss
methods for preprocessing, encoding, and representing medical data in ways that are compatible with these models, further fa-
cilitating their adoption in practical medical applications [10]. We highlight recent contributions that explore these directions,
with a particular focus on their application to radiology and cancer diagnosis. Finally, we outline the remaining challenges and
future prospects for making medical image analysis systems both effective and energy efficient, paving the way for wider clinical
integration.
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Analyzing a light-weight data-driven model of Drosophila
olfactory network
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Abstract: Data-driven spiking neural networks (SNNs) enable in silico investigation of neuronal dynamics at the
cellular scale, providing insight into general processing principles of the brain. Insect nervous systems, being less
complex yet well studied, are particularly valuable for analyzing mechanisms that also appear in mammalian cir-
cuits. Building on previous work [1], which introduced a lightweight, data-driven, digital model of the Drosophila
melanogaster brain based on the Piecewise Quadratic Neuron (PQN) model [2], we extend the analysis to refine its
biological plausibility. The original network reproduced key features such as olfactory associative learning (OAL)
and oscillatory activity in the antennal lobe. Here, we re-evaluate assumptions concerning inhibitory network
topology, focusing on the distribution and connectivity of Local Neurons (LNs). Two alternative antennal lobe
topologies are proposed: one integrating experimentally observed LN class ratios [3] with full interconnectivity,
and another constrained by connectome-derived sparse connectivity [4]. Odour input patterns were redesigned to
include deterministic pools, structured presentation sequences, and graded intensity variations, enabling broader
assessment of learning and sparse coding performance. Results show that input variability strongly impacts be-
haviour: OAL success for the base topology fell from 84% to 42.24%, while the best alternative achieved 46.33%.
Additional analyses like unexpected output neuron firing and antennal lobe modulation hint to topology-dependent
performance, as well as case-dependent OAL success rate. These findings highlight the impact of inhibitory struc-
ture on information processing and suggest pathways toward making this network a more faithful neuromorphic
module.
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Abstract: Recent advances have highlighted the potential of artificial neural networks (ANNSs) to improve diagnostic accuracy
in medical imaging [1-3]. Among possible ANN architectures, spiking neural networks (SNNs) show potential for deployment
on clinical edge devices, as they combine low energy consumption with performance approaching conventional ANNs [4-6].
However, SNNss still face challenges in high-resolution image classification, as the conversion of pixel intensities into binary
spikes can lead to information loss, while the absence of convolutional layers limits feature extraction, particularly for subtle
mammographic findings. To address these limitations, we propose and evaluate the Vision Attention Recurrent Spiking Neural
Network (ViA-RSNN), which integrates modules inspired by both biophysical models and vision transformers. Specifically, to
better capture subtle features while reducing computational cost, input images are divided into patches, which are flattened and
linearly projected into an embedding space. Network stability is enhanced through Poisson encoding, and a processing pipeline
incorporating a cross-attention mechanism between a recurrent network and a fully connected linear layer. On the Organ AMNIST
dataset, the ViA-RSNN trained with surrogate gradient learning for organ classification achieves about 96% test accuracy and an
AUROC of 98.6%, comparable to recent ANN architectures such as Medi-Cat (96% test accuracy) and ResNet-18 (224) (94.7%
test accuracy, 99.8% AUROC)[7] [8]. Preliminary results on the VinDR-Mammo dataset further support the potential of the
approach, yielding above 90% test accuracy in binary classification of mammograms with or without masses. Combined with
the relative compactness of the VIA-RSNN (effective storage cost of about 2 bits per parameter using 8-bit quantization), these
results encourage the further deployment of this architecture on a modern low-power SoC.
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Neuromorphic spatiotemporal spike pattern detection
model with heterosynaptic plasticity
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Abstract: The brain is an efficient information processing system, capable of complex learning with
ultra-low power consumption. The human brain, for example, processes single-trial, multimodal spa-
tiotemporal data and acquires new knowledge from it, all while consuming only about 20W of power.
Realizing such capabilities remains a significant challenge for current artificial intelligence technologies
based on deep learning. Consequently, neuromorphic systems that faithfully mimic the mechanisms
of the biological brain are of growing importance. To overcome the constraints of power consumption
and device size, it is desirable to implement these systems using dedicated hardware with analog,
digital, or mixed-signal circuits. A major challenge in such hardware is that the area of memory
circuits required to store synaptic weights increases exponentially with the bit resolution of these
weights. While adaptive Spike-Timing-Dependent Plasticity (STDP) [1] proposed to address this, its
mechanism of modifying the learning curve independently of neural activity lacks neurophysiological
plausibility. Here, we introduce a neurophysiologically plausible learning rule based on heterosynaptic
plasticity induced by glutamate spillover. We incorporated this mechanism into a spatiotemporal spike
pattern detection model [2] with 3-bit discretized synaptic weights. Our results demonstrate that the
proposed model achieves performance of spike pattern detection equivalent to that of a baseline model
with 64-bit synaptic weights. These findings provide a foundational basis for designing energy-efficient
neuromorphic systems with significantly reduced memory circuit area.

Keywords: Spike timing dependent plasticity, heterosynaptic plasticity, spatiotemporal spike pattern
detection, low-resolution bit synapse
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